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Non-equilibrium hydrodynamic fluctuations and a 
generalised entropy 

David Jou and Teresa Careta 
Departament de Termologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, 
Bellaterra (Barcelona), Spain 

Received 21 September 1981, in final form 19 May 1982 

Abstract. We study the non-equilibrium corrections to the classical Landau-Lifshitz 
formulae for the fluctuations of the heat flux and of the viscous pressure. Our analysis is 
based both on a non-equilibrium entropy and on a microscopic model. The results are 
of the same order but not coincident. 

1. Introduction 

The description of non-equilibrium fluctuations in thermodynamic systems has deser- 
ved a great deal of attention for many years (Lax 1960). The analysis of hydrodynamic 
fluctuations near non-equilibrium steady states has received a great impulse in the 
last two years, with the theoretical prediction and experimental confirmation of some 
new features, mainly an asymmetry between the two Brillouin lines in the light- 
scattering spectrum in a fluid with a temperature or a velocity gradient, which has 
stimulated an intensive research in this field (Procaccia et a1 1979, Ronis et a1 1979, 
1980, Tremblay et a1 1981). 

The purpose of this paper is to analyse some aspects of an extended thermodynamic 
formalism in connection with non-equilibrium hydrodynamic fluctuations. In previous 
papers (Jou et a1 1980, Jou and Casas-Vhzquez 1980) we have shown that starting 
from a generalised entropy that contains as supplementary variables the dissipative 
fluxes (Muller 1967, Lebon et a1 1980) and from a generalised Einstein relation for 
the probability of fluctuations, we are directly led in equilibrium to a particular form 
of the fluctuation-dissipation theorem for the fluctuations of the heat flux and of the 
viscous pressure tensor. Our aim here is to analyse the non-equilibrium situation or, 
more specifically, to study the non-equilibrium corrections to the classical Landau- 
Lifshitz formulae for the fluctuations of dissipative fluxes in the presence of a tem- 
perature or a velocity gradient. 

As is well known, purely phenomenological analyses of non-equilibrium fluctu- 
ations are problematic and generally inaccurate. However, since our entropy contains 
as independent variables some characteristic non-equilibrium parameters (the dissipa- 
tive fluxes), it seems convenient to explore its ability to describe non-equilibrium 
fluctuations. With this in mind, we proceed also to the computation of the non- 
equilibrium corrections starting from a microscopic model based on a relaxational 
kinetic equation. 
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In 0 2 we give a brief account of the extended thermodynamic theory and in 9 3 
we recall its application to equilibrium fluctuations to compute numerical values for 
the generalised equations of state. In § § 4  and5 we analyse heat fluctuations in a 
fluid with an imposed temperature gradient and viscous pressure fluctuations in the 
presence of a velocity gradient, respectively. In § 6 we calculate the corresponding 
corrections from a microscopic model, and in the concluding remarks we comment 
on the discrepancies between both results. 

2. Extended irreversible thermodynamics 

Our first aim is to formulate a thermodynamic framework able to describe the response 
of macroscopic systems to moderately high frequencies, i.e. for frequencies much 
lower than the inverse of the mean collision time between the particles of the system 
but high enough to produce some modifications to the results of the classical hydro- 
dynamic theory. In the usual limit of very low frequency phenomena, the description 
of the system is based on its classical 'slow' conserved variables, such as the density, 
the linear momentum and the internal energy (Forster 1975). When the frequency 
of the perturbation becomes somewhat higher, comparable for instance to the relaxa- 
tion times of the dissipative fluxes, we have to take account of these fluxes as new 
independent 'slow' variables, since in such short times they are no longer univocally 
determined by the spatial gradients of the classical hydrodynamic variables. Such an 
approach has been taken in some microscopic theories, as for instance in the thirteen- 
moments development of the kinetic theory of gases (Grad 1959) or dense fluids (Eu 
1980) or in a memory-function analysis of generalised hydrodynamics of simple fluids 
(Akcasu and Daniels 1970). Our purpose in this section is to present a brief account 
of a thermodynamic formalism which includes as independent variables not only the 
classical ones but also the dissipative fluxes. 

One of the central quantities in a thermodynamic theory is the entropy. In the 
classical theory of irreversible processes, one assumes that the entropy production is 
locally and instantaneously positive definite, which is in fact a statement stronger than 
the classical formulation of the second law, which is a global statement. From this 
requirement, one deduces some restrictions on the constitutive equations for the 
dissipative fluxes. In the usual linear theory, these restrictions imply the positive 
character of the thermal conductivity A,  the bulk viscosity 5 and the shear viscosity 
p.  Here, we look for more general constitutive equations for the dissipative fluxes. 
In order to obtain them from a thermodynamic point of view, we assume the existence 
of a generalised entropy s which is defined locally and which depends on the above 
mentioned set of variables, 

s = s ( u ,  U, 4, p",  9') 

where U is the internal energy per unit mass, U the specific volume and q, p" and P" 
are the heat flux, the scalar viscous pressure and traceless viscous pressure, respectively. 
Assuming that (1) is differentiable enough, one can proceed in a way similar to the 
usual development of classical irreversible thermodynamics (De Groot and Mazur 
1962) to obtain second-order constitutive equations for the evolution of the new 
independent variables, namely the dissipative fluxes, while the evolution of the classical 
variables is given by the well known balance equations of mass, linear momentum 
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and energy 

p u  = V * v ,  

pu = - V . q - P : V ,  

pV=-V*P+pF,  

In these equations, p is the mass density, F the external body force per unit mass, U 
the baricentric velocity, V the symmetric part of the velocity gradient and P the pressure 
tensor, which is given by P = (p +pv)U + P', with p the thermodynamic pressure and U 
the unit matrix, the colon between two tensors standing for their respective double 
contraction. 

In the simplest linear approximation, the generalised constitutive equations for 
the evolution of the dissipative fluxes reduce to the well known Maxwell-Cattaneo 
relaxational equations (Lebon et a1 1980). We do not develop the formalism in detail, 
because the reader may find longer accounts, for instance, in Lebon (1978), Jou et a1 
(1979) and Lebon et a1 (1980). In the present approximation, the evolution equations 
of the dissipative fluxes are 

4 =-T;'(q+AVT),  

pv = -To1 (p' -I- [V * U), 

(BY)' = - T i 1  (P  + 2p 0). 
Here, the 7's stand for the relaxation times of the respective fluxes. In the stationary 
limit, these equations reduce to the classical Fourier and Newton-Stokes equations. 
They can be justified from kinetic theory of gases in a relaxation-time approximation 
(Nonnenmacher 1980) or in the context of several different approximations (Carrassi 
1978). Though very simple, they have been used for instance for the analysis of 
ultrasonic dispersion and absorption in monatomic gases (Carrassi and Morro 1972) 
and for the description of second sound in dielectric crystals at low temperatures, and 
they can be deduced from a Boltzmann equation for phonons (Guyer and Krumhansl 
1966, Rogers 1971). It must be noted that more general equations may be obtained 
either from kinetic theory (Burnett equations) or from a thermodynamic formalism. 
Here, we take them as the simplest possible model able to describe in a direct way 
some features which are not covered by the classical non-equilibrium thermodynamics. 
In the case of a quiescent fluid, the Burnett equations reduce simply to (5)-(7), so 
that their use is provided with plausible physical meaning. 

It has been shown on different occasions (Jou et a1 1980, Jou and Casas .VBzquez 
1980) that the generalised Gibbs equation compatible with the constitutive equations 
( 3 4 7 )  is given by 

ds = 8-' du + 8-'.rr du - (r1V/AT2)q dq - ( T O u / l T ) p V  dpv- (r2~/2pT)BV : d.P (8) 
where the equations of state for 8-' and 8-'.rr, which are analogous to the classical 
equations of state of thermostatics, may be obtained up to order two in the dissipative 
fluxes from the generalised Maxwell relations corresponding to the equality of the 
second-order mixed derivatives of s. Indeed, from (8) we have 

= -(&duq, (e-')+ = -(aO)upv, (e-l),.= -(ff2)uBv, (9) 
with a1 =r lv lhT2 ,  ao=rou/lT, a2=r2u/2pT,  and where the subscripts stand for 
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partial derivatives, for instance, denotes ( a K ' / a q ) .  From (9) one can derive 

and analogously, one can obtain 

8 - ' r  = T - ' ~ ( u ,  U )  -$[(a1)&'+ (ao)vpV2+ ( a 2 ) J v  :$'I. (11) 

In these expressions, T and p are the usual local-equilibrium absolute temperature 
and thermodynamic pressure respectively. The corresponding non-equilibrium contri- 
butions to the equation of state for t9 were recently examined by Casas-Vhzquez and 
Jou (1981) for a class of rigid heat conductors. While in general these corrections 
are small, they play a significant role in the analysis of non-equilibrium fluctuations. 
It may be seen from (8) that the relaxational terms of the generalised equations 
(5)-(7) modify the classical Gibbs equation in such a form that the local equilibrium 
is in fact not consistent with such generalised constitutive equations. 

3. Equilibrium fluctuations and dissipative coefficients 

As is well known, the equilibrium fluctuations of the thermodynamic fluxes are 
intimately connected with the dissipative coefficients, which are some of the central 
quantities of non-equilibrium thermodynamics. This connection has been stated in a 
rigorous mathematical form in the diverse formulations of the fluctuation-dissipation 
theorem (Balescu 1975) and it has inspired a great deal of research and development 
in statistical mechanics. As we have shown (Jou and Casas-Vhzquez 1980), the 
non-equilibrium entropy defined in (8) leads in a very direct way to the fluctuation- 
dissipation theorem when the dynamics of the fluctuations of the fluxes is described 
by (5)-(7). This close connection of the generalised entropy with the fluctuation- 
dissipation theorem is a satisfactory feature not shared by other a priori formulations 
of non-equilibrium entropies as, for instance, in rational thermodynamics (Truesdell 
1969). 

The purpose of this section is to use the theory of fluctuations of the dissipative 
fluxes in equilibrium to evaluate the coefficients ai of (10) and ( l l ) ,  or, in other words, 
to obtain microscopic values for the dissipative coefficients. In order to obtain some 
information on the fluctuations we assume, as in the classical theory (Callen 1960, 
chap 15), that the probability W of the fluctuations at constant temperature and 
pressure, and for fixed values of the temperature gradient and the velocity gradient, 
is given by 

W - exp[( 1 / 2 k )S *SI (12) 

where k is Boltzmann's constant. It is known (Callen 1960) that this approximate 
Gaussian distribution function, the so-called Einstein relation, predicts the second 
moments correctly, but it does not predict third and higher moments accurately. 
However, we are only interested in the second moments, so that we may restrict 
ourselves to the use of the simple Einstein formula (12). Of course, in our case S is 
the generalised entropy defined by (8), and not simply the classical equilibrium entropy. 



Non-equilibrium hydrodynamic fluctuations 3199 

The second differential of the generalised entropy as obtained from (8) is given by 

S2s = e,' (Su)2+2e;16uSu + (e- 'T) , (Su)2-a1Sq ' S q  - f f o ( S p v ) 2 - a 2 S P : S p v  

-2q0ffluSu *Sq-2q,ff1,Su 'Sq - 2p:aoUSuSp'-2p:ao,SuSpv 

- 2l5;azUSu : S f i V  - 2fi;ff zuSu : SP. (13) 
In equilibrium, go = 0, p :  = 0 and P'; = 0, so that this latter expression becomes very 
simplified. When it is introduced into (12) with M the mass of the system considered, 
we obtain for the probability of fluctuations 

Pr(Su, SU, Sq, ~ p ' ,  a#") 
-exp{-(M/2k)[T;' @U)' + 2T;'SuSu 

+(T-'p),(S~)~-a1Sq * S q  -CXO(S~')~-CU~SP:SP]}. (14) 
Note that while M is fixed, the volume of the system V =Mu may fluctuate, so that 
this expression may be applied to compressible systems. The corresponding second 
moments of the fluctuations are respectively 

(SUSU) = -(k/M)(aT-'/aU)i&1, (15) 
(SUSV) = -(k/M)(aT-'p/a~)T', 

(SUSU) = -(k/M)(aT-'/au)$-1, 

which are just the classical results (Callen 1960) and 

(SqiSqj) = kAT2T;' V-'Sij, 

(Sp'Sp') = kfTT0' V-',  

(SP3P';l)  = kpTr;'V-'Aijki, 

where we have denoted Aijkl = &ajl +Sirsjk -$SijSkl. These expressions relate the dis- 
sipative coefficients A ,  5 and c~ with the fluctuations of the fluxes. As is usual, they 
may be regarded in two alternative ways: (a) the dissipative coefficients determine 
the fluctuations, and (b) the fluctuations determine the dissipative coefficients. This 
latter point of view has been exploited in the Green-Kubo formulae for the dissipative 
coefficients (Balescu 1975) which have received wide attention in the last twenty years. 
Note that (18)-(20) coincide with the Green-Kubo formulae when the evolution of 
the fluctuations of the fluxes is described by the relaxational equations (5)-(7). 

Up to now, our results have been purely macroscopic. Now, we proceed to calculate 
A and p (or a1 and cy2) from a microscopic interpretation of (18) and (20) for a simple 
gas. The bulk coefficient 5 is known to vanish for a simple monatomic gas. Equations 
(18) and (20) may be written as 

The fluctuations of the fluxes may be calculated from a microscopic point of view. 
The microscopic operators of the dissipative fluxes in a fluid of rigid spheres of mass 
m and relative velocity U = c -U with respect to the mean velocity of the system, U, 
are (Rksibois and De Leener 1977, p 305) 

(23) 1 2  ql=-imu ul-hul, 
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(24) f i v  - 
12 - mu1v2, 

where h = $kT is the enthalpy per particle. The fluctuations of macroscopic variables 
from their steady-state values may be related to the fluctuations of the distribution 
function f(r, U, t )  (Lax 1960, 0 12). For a macroscopic variable A with a microscopic 
operator A(u), whose steady-state value is given by 

the fluctuations SA = A  -Ao satisfy 

In the case of Boltzmann statistics it has been shown (Lax 1960) that 

(Sf(o)Sf(o’)) = v-%t(o)S(u -U‘) (27) 

with fst(o) the distribution function corresponding to the steady state, either in 
equilibrium or not. In equilibrium we have 

(28) fst = n (m/21rkT)~/’ exp(-mu2/2kT) 

with n = N /  V. Therefore we obtain 
m 

(SqlSql) = (4.rr/3)nV-1(m/2.rrkT)3/2 I v4(fmu2- h ) 2  exp(-mu2/2kT) du, (29) 

(Sl?zSI%) = (4.rr/15)nV-1m2(m/2.rrkT)3/2 I v 6  exp(-mu2/2kT) dv, (30) 

where we have taken into account that (SqlSqi) = f(S4 ‘ S q )  and that F(u):v; do = 
3 {F!u)u4 do. The integrals in (29) and (30) are easily performed and we get finally 

0 

m 

0 

1 

A =$k2Tnm-lr1, (31) 

CL = kTnr2. (32) 

These expressions provide microscopic values for A and CL in terms of the relaxation 
times r1 and r2.  It is seen that these relaxation times are not at all academic quantities 
but, on the contrary, if they are assumed to vanish, the dissipative coefficients also 
vanish. They are, therefore, central quantities in the theory of non-equilibrium and 
it seems worthwhile to build a thermodynamic framework giving them an adequate 
account. Though the theoretical computation of T~ and 7 2  is very difficult, we note 
that the relations (31) and (32) are enough to establish microscopic expressions for 
the coefficients r l /A  and r 2 / K  appearing in the equations of state of (8). 

We may compare these results with those of kinetic theory, based on a simplified 
relaxational model of the Boltzmann equation. In this approximation, it is assumed 
that the evolution of the distribution function is given by 

af/at + o . a f / a r + a  .af/ao =-r-’(f-fo) (33) 

where fo  is a local-equilibrium Maxwell-Boltzmann distribution function and r is a 
relaxation time characteristic of the period required for equilibration. From (33), and 
through a standard development (Wannier 1966, Balescu 1975, RBsibois and De 
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Leener 1977), we obtain 

A = $k2Tnm-'r, p = nkTr. (34) 

By comparing (31) and (32) with (34), we have r1 = r2 = 7, so that the fluctuation- 
dissipation formulae (21) and (22) recover the results of the relaxational kinetic 
equation (34) as a particular case, with the advantage of being valid at arbitrary 
densities. 

In fact, (31) and (32) are more general than (34). Indeed, let us consider the ratio 
mA/pc,, with cu the specific heat per particle at constant volume cv =$kT. In this 
case, we have from (31) and (32) 

While the value of this ratio in the kinetic relaxational model is $, a more detailed 
analysis of the solutions of the Boltzmann equation in the Chapman-Enskog develop- 
ment shows that mA/pc, = $, independently of the interaction potential. This result 
is confirmed experimentally and it indicates that T ~ = $ T ~ = $ T .  This result is also 
obtained from the solutions of the Boltzmann equation in the thirteen-moments 
approximation (Grad 1959). Of course, our macroscopic results are not so detailed, 
but they are compatible with these results, while it would be difficult to recover them 
from a simple two-relaxation-times generalisation of equation (33). 

4. Non-equilibrium heat fluctuations with a temperature gradient 

In the last three years, there has been a renewed interest in the description of 
hydrodynamic fluctuations near nonlequilibrium steady states (Procaccia er al 1979, 
Ronis et al 1979, 1980, Tremblay et a1 1981, Keizer 1976, 1978, Graham 1974, 
Onuki and Kawasaki 1979). Here, we consider the purely statistical problem of the 
non-equilibrium Langevin noise which is added to the linearised equations for the 
fluctuations. It is generally assumed that this Langevin force, due to the fluctuations 
of the dissipative fluxes, is described by the same correlation function as in equilibrium, 
with local values of temperature and of transport coefficients. Indeed, it is argued 
that the corresponding random forces, due to the fluctuating heat flux and viscous 
pressure, have such short correlation times that they do not have time enough to 
'know' whether the system is in equilibrium or not (Swift and Hohenberg 1977, Ronis 
et a1 1980, Tremblay et a1 1981), so that they are adequately characterised by a 
local-equilibrium average. Starting from this prescription for the noise, one can obtain 
from the dynamical stochastic equations the corresponding non-equilibrium correc- 
tions to the classical formulae for the hydrodynamic fluctuations, due to the spatial 
variation of the thermodynamic variables. 

Our purpose is to explore the consequences of the preceding analysis in non- 
equilibrium fluctuations, in order to provide an expression for the non-equilibrium 
hydrodynamic Langevin noise. Indeed, since in our approach the relaxation time of 
the fluctuations does not vanish, they have some time to know that the system is not 
in equilibrium, and therefore there arise some non-equilibrium corrections to the 
stochastic noise. 

Our analysis is based on the hypothesis that, at least very near from equilibrium, 
the probability of the fluctuations is still given by (12). Since our generalised entropy 
contains as independent variables the dissipative fluxes, one may expect that this 
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dependence may give some information on the effects of a non-vanishing mean heat 
flux on the hydrodynamic fluctuations. Of course, our results, based on this simple 
hypothesis, are not rigorous. Our aim here is precisely to test their degree of accuracy. 

In this section, we specialise our analysis to the problem of heat fluctuations in a 
fluid with an externally imposed temperature gradient in the x direction. In this case, 
the general expression (13) for the second differential of the entropy reduces to 

S'S = ~ ; ' ( S U ) ~ + ~ ~ ; ' S U S U  +(e-'T)(sv)'-a16q esq - 2 q o ~ 1 u ~ ~ ~ q  - ~ ~ , C Y ~ , S U S ~  (36) 

where qo is given by the classical Fourier law qo = -ATo,, with the subscript x standing 
for the partial derivative with respect to x. 

Introducing this expression into the generalised Einstein formula (12), we obtain 
a multivariant distribution function for the probability of fluctuations of U, U and q. 
Taking into account that for a Gaussian probability distribution function of the form 

w - exp(-&jkSxiSxk) (37) 

the second moments are given by (SxiSxj) =E;',  we get, by leaving aside the results 
for the classical variables, 

(38) 

(39) 

( W q  ) = (kE/Ma i){A - $q [Ti  la 1 + ( T-'p 1 uu - 2 K 1 a  1 uu I), 

(SuSq) = -(kE/Mal)qo{T;'al" - (T-lP)"alul, 

(SUSq)  =-(kE/Mai)qo(T;'aiK - Tila io) ,  (40) 

A =  T;' (T- 'p) ,  -(Ti1)*,  (41) 

where 

E stands for {A[l +q;(A/A)]}-' and A is given by 

These expressions reduce to the equilibrium ones when qo = 0, and they show the 
corrections arising from a non-vanishing heat flux. We note that in non-equilibrium, 
the correlations between quantities of different time-reversal parity do not vanish, as 
for instance (SuSq) and (SuSq). This indicates a breaking of the time-reversal symmetry 
in non-equilibrium as noted in a similar context but from a statistical basis by Ronis 
er a1 (1979). The equation (38) for the fluctuations of the heat flux contains non- 
equilibrium corrections to the classical Landau-Lifshitz formulae (Landau and Lifshitz 
1971). 

In order to get a clearer insight into these equations, we assume that the temperature 
gradient is very small, so that the denominator can be expanded up to second order 
in qo. Also, we specialise our results to the case of an ideal monatomic gas. For such 
a gas 

(T-lp), =  TU)-', T;' = 0, Ti' = -(c"T')-', (43) 

with co = $ ( k T / m ) .  Furthermore, from (31) we know that a1 is given by a l =  
$(k2T3n2)- ' ,  so that 

(44) alu = $ n ( n k  T ) . 
When (43) and (44) are introduced into (38)-(40), and up to second order in qo, they 

2 3 -1 4 2 4 3 - 1  a l u = - - j m ( n  T k ) , 
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become highly simplified and reduce to 

which show the numerical values of the non-equilibrium corrections in this simple 
case, 1 being the mean-free-path defined as I = 710, with B the mean velocity given 
by the usual expression B = (8&T/rm)"2. Since in this case the velocity is zero, the 
Burnett equations reduce to the Maxwell-Cattaneo equations and our simple analysis 
is meaningful. 

5. Non-equilibrium viscous pressure fluctuations with a velocity gradient 

Another typical problem in non-equilibrium hydrodynamics is the plane Couette flow. 
In this case, the fluid is placed between two infinite parallel planes in the xz  directions. 
One of them is at rest while the other one is moving at a constant velocity U in the 
x direction. In this simple situation, the only variables of interest are U, U and PY2. 

Some problems related with the fluctuations of a fluid in this situation have been 
analysed by Onuki and Kawasaki (1979) in a series of papers, mainly in the proximity 
of a critical point. 

As in the previous section, we assume that the fluid is far from the critical point, 
and we look for the non-equilibrium corrections in the correlation formula for the 
stochastic noise due to the fluctuations of the viscous pressure tensor. As above, we 
assume that near to equilibrium, the probability of the fluctuations is given by (12) 
with the corresponding simplified expression of the generalised entropy, with Pi20 = 
- ~ ( ( a u / a y ) ~  according to the classical Newton law. Now, we obtain for the second 
moments of the fluctuations of the fluxes 

(SP;,SPY,) = ( ~ E ' / M ~ ~ ) [ A - ~ P ; ~ ~ ~ ~ ( T ; ~ ~ ~ ~ ~  + T ; ~ ~ ~ ~ ~  - 2 ~ ; ' ~ ~ , , ) 3 ,  (48) 

(49) 

(50) 

with A and A' given by the corresponding expressions (41) and (42) with a1 substituted 
by a,, and with E' standing for {A[l +2P;:0(A'/A)]}-1. 

As in the preceding case, the non-equilibrium situation induces a breaking of the 
time-reversal symmetry, as is seen in the non-vanishing correlations (49) and (50) ,  
and a correction to the Landau-Lifshitz expression, as is evident in (48). In order to 
have some numerical estimates, we assume now small values of the velocity gradient 
and an ideal monatomic gas. In this case, taking into account (32), we have a2= 
rzv /2pT = (2mn2kT2)-' .  Introducing this result and (43) into (48)-(50), we get 

( S u W z )  = - (kE' /M~z)P;zo[T; '~zU - (T-'p)uazul, 

(SVSP; , )  = - ( & E ' / M ~ ~ ) P ~ ~ ~ ( T ; ' ~ ~ ~  - T ; & ~ ) ,  

(s&s@;,) = p k ~ 7 ; '  v-'[i + Y7f ( a ~ / a y  13, 
(susP';,) = - 2 k ~ ~ - ' p  (aul/ay)o, (52) 

(SVSP:,) = 2vp (au1/ay)o, (53) 

(51) 

which are analogous to (45)-(47) in the present physical situation. 
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6. Non-equilibrium fluctuations from a microscopic model 

In order to have an insight into the signification of (45)-(47) and (51)-(53), and to be 
able to test their accuracy, we proceed to evaluate the non-equilibrium second moments 
of the fluctuations of the heat flux and of the viscous pressure from a simple kinetic 
model. To obtain an expression for the non-equilibrium distribution function needed 
in (27), we start from the kinetic relaxational equation (33). If the external forces 
(and hence a )  are assumed to vanish, this equation may be written as 

f = [ 1 + T ( a / a f  + C  'V)]-'feq (54) 

with feq given by (28), and a perturbative solution of it may be obtained by developing 
formally the operator of the right-hand side of (54) in series of T (Nonnenmacher 
1980). Up to second order in T and in a stationary situation, the non-equilibrium 
distribution function fst is given by 

f s t = f e q - ~  *Vfeq+(nt.V)(.r~ .V)feq. ( 5 5 )  

Let us assume at first that a temperature gradient in the x direction is imposed 
on a gas at rest, uniform in pressure. In this case, the first- and second-order 
contributions to fSt are respectively 

(56) f") = -.rul[(mu2/2kT2) - 5/2Tlfeq(dT/ax), 

f 2 ' =  ~~u:[(mu~/2kT~)~+(35/4T~)-$(mu~/kT~)lf~~(aT/ax)~. (57) 
Introducing these expressions and the corresponding microscopic operator (23) into 
(26), and having in mind that in equilibrium (Sq1Sql)=2k3T3n/mV, we have finally 

(Sqtaq1)ne = (SqiSqi)eq[l+ 8.925d2(V In T)'I ( 5 8 )  

where we have used the mean-free path I. Analogously, when (57) and the microscopic 
operator (24) of the viscous pressure are introduced into (26), and having in mind 
that in equilibrium (S&2S&2) = k2T2n/ V, one may find 

(59) 
Let us now assume that a velocity gradient is imposed on a gas at constant pressure 

and temperature. The flow is in the x direction. In this case, the first- and second-order 
contributions to the non-equilibrium distribution function take the respective forms 

(S@;2Sfi;2)ne = (S&2SP;2)eq[ 1 + O.750d2(V In T)2]. 

f'" = - 7 ~ l ~ ~ ( m / k T l f e q ( a ~ l / a ~  ), (60) 

f2 )  = .r2u:u2(m/kT)2fe,(aul/ay)2.  (61) 

(Sq2Sqdne = (Sq2&2)eq[l + 10.2oOTi (au l/aY 1'1, 
(SP;,S&),, = (S#;,SP;,),,[l+ 9T;(au,/ay)2]. (63) 

Introducing these expressions and the microscopic operators (23) and (24) into 

(62) 

(26), one is led to 

By combining the expression of the internal energy, the operators (23) and (24) 
of the fluxes and the first-order contributions to the non-equilibrium distribution 
function (56) and (60), one gets 

(SuSql),, = -4.75kTM-lA (aT/ax)o, (64) 
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(8U8F;2)ne = -3 .50kzw'p  (au l/ay)o. (65) 

To make some of these expressions more familiar to the reader, recall that the 
dynamics of the fluctuations is described by (5)-(7), so that in the Fourier space we have 

In the low-frequency limit and per unit volume, (58) and (59) may be written in the 
more usual form 

(68) 

(69) 

(8q18q1)ne = 2khT2[1 +8.925d2(V In 27'1, 
(8&28&2)ne = 2kpT[1+ 0.750mIZ(V In T)2], 

( S q ~ S q 2 ) ~ ~ =  2khT2[1 + 10.200~:(a~l /ay)~] ,  (70) 

(8P;2815;2)"e = 2kpT[1 +97;(aul/ay)2]. (71) 

and in the case of a velocity gradient, (62) and (63) lead to 

We note that the non-equilibrium corrections to the Landau-Lifshitz formulae are 
very small, since the relaxation times are usually very short, and therefore the use of 
the classical expressions for the hydrodynamic Langevin noise is rather justified in 
common situations. Other features typical of non-equilibrium arise from the local 
variation of the temperature and hence of the physical parameters involved in these 
expressions. These corrections influence the correlation function of the density and 
are therefore, in principle, observable. They have been analysed in detail (Tremblay 
et a1 1981, Ronis et a1 1980, Van der Zaan and Mazur 1980) and are of a different 
origin from those studied here. 

7. Concluding remarks 

Comparison of macroscopic expressions (45) and (46), (51) and (52) with their 
respective microscopic counterparts (58) and (64), (63) and (65) shows a discrepancy 
which may be analysed in some detail. On the one hand, the microscopic values are 
not necessarily the exact real values of the fluctuations. Remember, for instance, that 
the kinetic equation (33) leads to a ratio mh/pc ,  which is related to the experimental 
ratio by a factor $, which can be obtained by more refined microscopic models. In 
particular, this leads to the identification 7 2 ~ 7  and TI=&, a factor which, if taken 
into account in (45) and (46), changes the respective factors 2 5 ~ / 8  and 3 to 7 . 0 3 1 ~  
and 4.5, which are closer to the microscopic values 8 . 9 2 5 ~  of (58) and 4.75 of (64). 
This fact mitigates somewhat the disagreement between the microscopic and the 
macroscopic results. On the other hand, it is known that the classical entropy is related 
to the probability of fluctuations through the Einstein relation in equilibrium, but not 
out of equilibrium. We have seen here that our entropy, in spite of containing as 
variables some typical non-equilibrium parameters, is related to the fluctuations of 
the dissipative fluxes only in equilibrium, while in non-equilibrium it gives corrections 
of the right order of magnitude, but quantitatively inaccurate. 
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This result, though not surprising, is not immediate. Indeed, if one defines a 
non-equilibrium entropy for Boltzmann statistics as 

ps = - k  f(1nf- 1) do, (72) I 
the non-equilibrium fluctuations of the distribution function are well described by the 
second differential of the entropy through the Einstein relation (Lax 1960). This is 
seen if one takes f=fst+Sf and retains only the second-order contribution of Sf to 
( 7 2 ) .  In this way, one obtains 

( 7 3 )  

which leads to the correct result ( 2 7 ) .  Since we are dealing with Boltzmann statistics, 
one could ask therefore whether the integrated entropy ( 7 2 )  does describe non- 
equilibrium fluctuations at a macroscopic level. 

Note at this point that the entropy (8) does indeed correspond to (72 ) .  We restrict 
our attention to the case of a heat flux, because the extension to the viscous pressure 
is straightforward. When (8) is integrated we get 

Pr(Sf) - exP[- (U/ 2)(Sf)’ l f s t l  

p~ = p s o - ( ~ / 2 A T ’ ) q ’ .  (74) 
On the other hand, the first- and second-order contributions of (72 )  to the entropy 
are given by (De Groot and Mazur 1962, p 182) 

PSI = -k  I feq41 In feq do = 0, (75) 

where c $ ~  is defined by fl =feq41. From (56) and from the microscopic operator ( 2 3 )  
it is seen that 

41 = - ( T / k T 2 ) q z ( o ) ( a T / w  (77) 

which, when introduced into (76), leads to 

which, in view of the results of 0 3, is precisely psz = - ( r /2AT2)q2 ,  in accordance with 
(74). The coincidence of ( 7 4 )  with the microscopic integration of ( 7 2 )  can also be 
shown from more elaborate models, such as the thirteen-moments one (Grad 1959). 
Therefore, though (72) describes the fluctuations of the distribution function, it does 
not describe accurately the fluctuations of the macroscopic variables. 

One could argue that the disagreement is due to the very simple form of (5) - (7)  
as compared with the more complicated Burnett equations. However, in both situ- 
ations studied here and in these simple geometries, the Burnett equations reduce 
essentially to (5) - (7) .  One could also ask for the influence of the fourth-order terms 
ps4 on the second derivative of ps, and hence on the fluctuations. Of course they may 
modify the result presented here, but they must be omitted because they are not 
compatible with (5) - (7) ,  and hence they are beyond the present scope of our simple 
phenomenological model. 
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Though the present analysis of the fluctuations is not sufficiently accurate at this 
stage, it reproduces some qualitative features of non-equilibrium fluctuations which 
are not covered by the classical theory, as seen in our recent study of heat fluctuations 
in rigid heat conductors (Jou et a1 1982). The study of the fluctuations leads to 
quantitative conclusions from the non-equilibrium equations of state, and therefore 
it may be a method to compare the relative merits of non-equilibrium entropies with 
respect to the problem of fluctuations. In fact, some recent approaches to thermo- 
dynamics of non-equilibrium steady states have started from this problem (Keizer 
1976,1978): from the second moments of the fluctuations obtained from microscopic 
theories (kinetic models, master equations) one constructs an entropy through the 
Einstein relation (12). Here, on the contrary, we have a non-equilibrium thermo- 
dynamic potential and we have looked for its consequences in non-equilibrium 
fluctuations. 
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